

Fire-resistance test on fire collars protecting a concrete slab penetrated by services

Test Report

Author:	Peter Gordon
Report number:	FSP 2274
Date:	20 December 2023

Client:

IG6 Pty Ltd

Commercial-in-confidence

This document is issued in accordance with NATA's accreditation requirements. Accreditation No. 165 – Corporate Site No. 3625 Accredited for compliance with ISO/IEC 17025 - Testing

Inquiries should be addressed to:

Fire Testing and Assessments	Author	The Client
NATA Registered Laboratory	Infrastructure Technologies	IG6 Pty Ltd
14 Julius Avenue	14 Julius Avenue	1343 Wynnum Road
North Ryde, NSW 2113	North Ryde, NSW 2113	Tingalpa QLD
Telephone +61 2 9490 5444	Telephone +61 2 9490 5500	Telephone + 61 7 3390 5420

Report Status and Revision History:

VERSION	STATUS	DATE	DISTRIBUTION	ISSUE NUMBER
Revision A	Final for issue	22/04/2022	CSIRO and The Client	FSP 2274
Revision B	Amend to reflect correction to FRL for Specimen 1.	02/11/2022	CSIRO and The Client	FSP 2274
Revision C	Amend to correct pipe product identification	20/12/2023	CSIRO and The Client	FSP 2274

Report Authorisation:

AUTHOR	REVIEWED BY	AUTHORISED BY
Peter Gordon	Glenn Williams	Chris Wojcik
Peblonton	J. Williams	Cloycik
20 December 2023	20 December 2023	20 December 2023

Use of Reports – Testing

This report is subject to binding obligations under which it was prepared. In particular, the Report must not be used:

- as a means of endorsement; or
- in a company prospectus or notification to a Stock Exchange document for capital raising, without the prior written consent of CSIRO.

The Report may be published verbatim and in full, provided that a statement is included on the publication that it is a copy of the Report issued by CSIRO.

Excerpts of the Report may not be published.

Use of Reports – Consultancy

This report is subject to binding obligations under which it was prepared. In particular, the Report may only be used for the following purposes:

- the information in the Report may be used by the party that commissioned the Report for its internal business operations (but not licensing to third parties);
- the report may be copied for distribution within the organisation that commissioned the Report;
- copies of the Report (or extracts of the Report) may be distributed to contractors and agents of the organisation that commissioned the Report who have a need for the Report for its internal business operations. Any extracts of the Report distributed for this purpose must clearly note that the extract is part of a larger Report held by the organisation that commissioned the Report and which has been prepared by CSIRO.

The name, trade mark or logo of the CSIRO must not be used without the prior written consent of CSIRO.

The Report must not be used as a means of endorsement without the prior written consent of CSIRO.

Copyright and disclaimer

© 2022 CSIRO To the extent permitted by law, all rights are reserved and no part of this publication covered by copyright may be reproduced or copied in any form or by any means except with the written permission of CSIRO.

Important disclaimer

CSIRO advises that the information contained in this publication comprises general statements based on scientific research. The reader is advised and needs to be aware that such information may be incomplete or unable to be used in any specific situation. No reliance or actions must therefore be made on that information without seeking prior expert professional, scientific and technical advice. To the extent permitted by law, CSIRO (including its employees and consultants) excludes all liability to any person for any consequences, including but not limited to all losses, damages, costs, expenses and any other compensation, arising directly or indirectly from using this publication (in part or in whole) and any information or material contained in it.

Contents

1	Introd	luction6
	1.1	Identification of specimen 6
	1.2	Sponsor
	1.3	Manufacturers
	1.4	Test standard
	1.5	Reference standard
	1.6	Test number
	1.7	Test date
2	Descr	iption of specimen
	2.1	General7
	2.2	Dimensions
	2.3	Orientation9
	2.4	Conditioning
	2.5	Selection, construction and installation of the specimen and the supporting construction 10
3	Docur	nentation
4	Equip	ment
	4.1	Furnace
	4.2	Temperature
	4.3	Pressure
	4.4	Measurement system 11
5	Ambie	ent temperature
6	Depar	rture from standard
7	Termi	nation of test
8	Test r	esults
	8.1	Critical observations
	8.2	Furnace temperature
	8.3	Furnace severity
	8.4	Furnace pressure
	8.5	Specimen temperature
	8.6	Performance
9	Fire-r	esistance level (FRL)
10	Field	of direct application of test results14
11	Teste	d by14

Appendices	15
Appendix A – Measurement location	15
Appendix B – Photographs	16
Appendix C – Test Data charts	26
Appendix D – Installation drawings	33
Appendix E – Specimen Drawings	38
Appendix F – Certificate(s) of Test	43
References	47

Fire-resistance test on fire collars protecting a concrete slab penetrated by services

Sponsored Investigation No. FSP 2274

1 Introduction

1.1 Identification of specimen

The sponsor identified the specimens as SNAP fire collars protecting a 150-mm thick concrete floor slab penetrated by four (4) George Fischer Fuseal PP110 polypropylene pipes.

1.2 Sponsor

IG6 Pty Ltd 1343 Wynnum Road Tingalpa QLD

1.3 Manufacturers

Snap Fire Systems Pty Ltd 1343 Wynnum Road Tingalpa QLD

1.4 Test standard

Australian Standard 1530, Methods for fire tests on building materials, components and structures, Part 4-2014, Fire-resistance tests for elements of construction.

Section 10: Service penetrations and control joints.

1.5 Reference standard

Australian Standard 4072, Components for the protection of openings in fire-resistant separating elements, Part 1 - 2005, Service penetrations and control joints.

1.6 Test number

CSIRO Reference test number FS 5166/4750

1.7 Test date

The fire-resistance test was conducted on 21 March 2022.

2 Description of specimen

2.1 General

The specimen comprised an 1150-mm x 1150-mm x 150mm/180-mm concrete slab which was penetrated by a total of four (4) polypropylene pipes protected with SNAP retrofit and cast-in fire collars.

The 180-mm thick section of the concrete slab used in the installation of Specimen 1 was reinforced with a single layer of steel reinforcement providing a Fire Resistance Period (FRP) for insulation of 240 minutes in accordance with table 5.5.1 of AS 3600:2018 - Concrete structures.

The 150-mm thick section of the concrete slab used in the installation of Specimens 2, 3 and 4 was reinforced with a single layer of steel reinforcement providing a Fire Resistance Period (FRP) for insulation of 180 minutes in accordance with table 5.5.1 of AS 3600:2018 - Concrete structures.

For the purpose of the test, the penetrations were referenced as Specimen 1, 2, 3 and 4. Documents containing a complete description of each specimen were supplied by the sponsor and are retained on file.

The pipes used in the test are stated to be manufactured in accordance with

• AS/NZS 7671:2010 Plastic piping system for soil and waste discharge (low and high temperature) inside buildings – Polypropylene (PP).

<u>Specimen 1 – A SNAP LP100R-D Low Profile Retrofit fire collar and SNAP H100FWS-RR High-Top</u> <u>Floor Waste Shower Cast-in fire collar protecting a nominal 4-inch Fuseal polypropylene pipe</u> <u>incorporating a floor waste and a P-Trap</u>

The SNAP H100FWS-RR High-Top Floor Waste Shower Cast-in fire collar comprised a 1.6-mm thick polypropylene casing with a 119-mm inner diameter and a 213-mm base flange. The 250-mm high collar casing incorporated a layer of 412-mm x 85-mm x 4-mm thick Intumescent material and a rubber ring seal. The closing mechanism comprised three equally spaced steel springs held with nylon fuse links. The springs were fabricated using 304 grade stainless steel wire with a diameter of 3.15-mm, with the springs acting against a layer of 316 grade stainless steel mesh measuring 460 x 83-mm as shown in drawing titled 'SNAP 100 High-Top Floor Waste Shower', dated 29 September 2017, by Snap Fire Systems Pty Ltd.

The SNAP H100FWS-RR High-Top Floor Waste Shower collar was cast into a 180-mm thick concrete slab with the collar's casing cut down to 180-mm high finishing flush with the unexposed face of the concrete slab.

The SNAP LP100R-D Low Profile Retrofit fire collar comprised a 0.95-mm steel casing with a 122-mm inner diameter and a 260-mm diameter base flange. The 65-mm high collar casing incorporated a closing mechanism which comprised a 5-mm thick x 59-mm wide x 418-mm long Intumesh intumescent wrap lined within the internal circumference of the collar casing. The closing mechanism comprised four 4-mm diameter 304 stainless steel springs with black nylon fuse links and a 415-mm long x 120-mm wide mesh with a wire diameter of 0.15 mm as shown in drawing numbered LP100R-D-T dated 10 February 2017, by Snap Fire Systems Pty Ltd.

The SNAP LP100R-D fire collar was centrally located over the SNAP H100FWS-RR cast-in collar on the exposed face of the concrete slab and fixed in place through the four mounting brackets using 5-mm x 30-mm long concrete screw bolts.

The penetrating service comprised a polypropylene pipe with a floor waste system incorporating a P-Trap. The penetrating George Fischer Fuseal PP110 polypropylene pipe had a 114.3-mm outside diameter pipe with a wall thickness of 6.7 mm and was fitted through a sleeve on both fire collars. The top of the propylene pipe incorporated a floor waste comprising a chrome plated brass grate and a plastic puddle flange. A 15-mm thick grout screed was laid on top of the concrete slab and finished flush with the floor grate.

On the exposed side of the slab a Fuseal P-Trap was coupled below the SNAP LP100R-D fire collar. The end of the P-Trap was closed with a ceramic fibre (Superwool) plug. The P-Trap was supported from the centre coupling using double hanging side nut clips fixed to the slab with 5-mm x 30-mm long steel concrete screw bolts and from the end of the P-Trap, with a nut clip and M10 threaded rod that was fixed to the concrete slab with a steel drop-in anchor.

The P-trap was charged with water to the level shown in drawing titled 'Specimen #1 110 Fuseal PP110 Floor Waste & LP100R-D over H100FWS-RR', dated 9 March 2022, by Snap Fire Systems Pty Ltd.

Specimen 2 - A SNAP H100S-RR High-Top Stack cast-in fire collar protecting a nominal 4-inch Fuseal polypropylene stack pipe

The SNAP H100-S-RR High-Top Stack cast-in fire collar comprised a 1.6-mm thick polypropylene casing with a 119-mm inner diameter and a 213-mm diameter base flange. The 250-mm high collar casing incorporated a 412-mm x 85-mm x 4-mm thick Intumesh intumescent material and a rubber ring seal. The closing mechanism comprised three equally spaced 3.15-mm diameter galvanised steel springs bound with nylon fuse links acting against a 460-mm x 83-mm 316 stainless steel mesh as shown in drawing titled "SNAP 100 High-Top Stack", dated 29 September 2017, by Snap Fire Systems Pty Ltd

The SNAP H100S-RR High-Top Stack fire collar was cast into a 150-mm thick concrete slab with the collar's casing cut down to 150-mm high finishing flush with the unexposed face of the concrete slab.

The penetrating service comprised a George Fischer Fuseal PP110 polypropylene pipe with a 114.3mm outside diameter pipe and a wall thickness of 6.7-mm fitted through the collars sleeve. The pipe projected vertically 2000-mm above the unexposed face of the concrete slab and 500-mm below into the furnace chamber. The pipe was supported at nominally 500-mm and 1500-mm from the unexposed face of the slab, left open at the unexposed end and capped with a ceramic fibre (Superwool) plug on the exposed end.

On the unexposed face the annular gap between the pipe and the collars sleeve was left unprotected as shown in drawing titled 'Specimen #2, 110 Fuseal PP110 Stack & H100S-RR', dated 9 March 2022 by Snap Fire Systems Pty Ltd.

Specimen 3 - A SNAP H50S-RR High-Top Stack cast-in fire collar protecting a nominal 2-inch Fuseal polypropylene stack pipe.

The SNAP H50S-RR High-Top Stack cast-in fire collar comprised a 1.6-mm thick polypropylene casing with a 63 mm inner diameter and a 150-mm diameter base flange. The 250 mm high collar casing incorporated a 230-mm x 55-mm x 5-mm thick Intumesh intumescent material and a rubber ring seal. The closing mechanism comprised three galvanised steel springs bound with nylon fuse links and a 268-mm x 53-mm 316 stainless steel mesh as shown in drawing titled 'SNAP 50 High-Top Stack', dated 29 September 2017, by Snap Fire Systems Pty Ltd.

The SNAP H50S-RR High-Top Stack fire collar was cast into a 150-mm thick concrete slab with the collar casing cut down to 150-mm high finishing flush with the unexposed face of the concrete slab.

The penetrating service comprised a George Fischer Fuseal PP110 polypropylene pipe with a 61.2-mm outside diameter pipe and a wall thickness of 4.5-mm fitted through the collars sleeve. The pipe projected vertically 2000-mm above the unexposed face of the concrete slab and 500-mm below into the furnace chamber. The pipe was supported at nominally 500-mm and 1500-mm from the unexposed face of the slab, left open at the unexposed end and capped with a ceramic fibre (Superwool) plug on the exposed end.

On the unexposed face the annular gap between the pipe and the collars sleeve was left unprotected as shown in drawing titled 'Specimen #3, 50 Fuseal PP110 Stack & H50S-RR', dated 9 March 2022 by Snap Fire Systems Pty Ltd.

<u>Specimen 4 - A SNAP H150S-RR High-Top Stack cast-in fire collar protecting a nominal 6-inch Fuseal</u> <u>polypropylene stack pipe.</u>

The SNAP H150S-RR High Top Stack fire collar comprised a white 2-mm thick polypropylene casing with a 180 mm inner diameter sleeve and a 292-mm diameter base flange. The 250-mm high collar casing incorporated a 600-mm wide x 110-mm wide x 6-mm thick intumescent material and a rubber ring seal. The closing mechanism comprised four x 4-mm diameter galvanised steel springs, four nylon fuse links and a 640 mm x 109-mm 316 stainless steel mesh as shown in drawing titled 'SNAP 150 High-Top Stack', dated 29 September 2017, by SNAP Fire Systems. The H150S-RR collar was cast into a 150-mm thick concrete slab with the collar casing cut down to 150-mm high finishing flush with the unexposed face of the concrete slab.

The penetrating service comprised a George Fischer Fuseal PP110 polypropylene pipe with a 168.2-mm outside diameter pipe and a wall thickness of 7.58-mm fitted through the collars sleeve. The pipe projected vertically 2000-mm above the unexposed face of the concrete slab and 500-mm below into the furnace chamber. The pipe was supported at nominally 500-mm and 1500-mm from the unexposed face of the slab, left open at the unexposed end and capped with a ceramic fibre (Superwool) plug on the exposed end.

On the unexposed face the annular gap between the pipe and the collars sleeve was left unprotected as shown in drawing titled 'Specimen #4, 160 Fuseal PP110 Stack & H150S-RR', dated 9 March 2022 by Snap Fire Systems Pty Ltd.

2.2 Dimensions

The specimen comprised an 1150-mm x 1150-mm x 150-mm thick concrete slab to suit the opening in the specimen containing frame.

2.3 Orientation

The reinforced concrete slab was placed horizontally on top of the furnace chamber and subjected to fire exposure from the underside.

2.4 Conditioning

The concrete slab was left to cure for a period longer than 30 days. The specimen was delivered on 8 March 2022 and stored under standard laboratory atmospheric conditions until the test date.

2.5 Selection, construction and installation of the specimen and the supporting construction

The supporting floor construction and specimen installation was organised by the sponsor. CSIRO was not involved in the selection of the materials.

3 Documentation

The following documents were supplied or referenced by the sponsor as a complete description of the specimen and should be read in conjunction with this report:

- Technical brochure 'Fuseal Corrosive Waste Piping Systems' dated May 2012 by Georg Fischer LLC.
- Drawing titled 'Test Slab S-22-D' Layout', dated 18 January 2022, by Snap Fire Systems Pty Ltd.
- Drawing titled 'Specimen #1 110 Fuseal PP110 Floor Waste & LP100R-D over H100FWS-RR', dated 9 March 2022, by Snap Fire Systems Pty Ltd.
- Drawing titled 'Specimen #2, 110 Fuseal PP110 Stack & H100S-RR', dated 9 March 2022, by Snap Fire Systems Pty Ltd.
- Drawing titled 'Specimen #3 50 Fuseal PP110 Stack & H50S-RR', dated 9 March 2022, by Snap Fire Systems Pty Ltd.
- Drawing titled 'Specimen #4, 160 Fuseal PP110 Stack & H150S-RR', dated 9 March 2022, by Snap Fire Systems Pty Ltd.
- Drawing titled 'SNAP 100 High-Top Floor Waste Shower', dated 29 September 2017, by Snap Fire Systems Pty Ltd.
- Drawing numbered LP100R-D-T dated 10 February 2017, by Snap Fire Systems Pty Ltd.
- Drawing tilted 'SNAP 100 High-Top Stack', dated 29 September 2017, by Snap Fire Systems Pty Ltd.
- Drawing titled 'SNAP 50 High-Top Stack', dated 29 September 2017, by Snap Fire Systems Pty Ltd.
- Drawing titled 'SNAP 150 High-Top Stack', dated 29 September 2017, by Snap Fire Systems Pty Ltd.

Confidential information about the test specimen has been submitted to CSIRO Infrastructure Technologies.

4 Equipment

4.1 Furnace

The furnace had a nominal opening of 1000-mm x 1000-mm for attachment of vertical or horizontal specimens.

The furnace was lined with refractory bricks and materials with the thermal properties as specified in AS 1530.4-2014 and was heated by combustion of a mixture of natural gas and air.

4.2 Temperature

The temperature in the furnace chamber was measured by four type K, 3-mm diameter, and 310 stainless steel Mineral Insulated Metal Sheathed (MIMS) thermocouples. Each thermocouple was housed in high-nickel steel tubes opened at the exposed end.

The temperatures of the specimen were measured by glass-fibre insulated and sheathed K-type thermocouples with a wire diameter of 0.5-mm.

Location of the thermocouples on the unexposed face of the specimen are described in Appendix A.

4.3 Pressure

The furnace pressure was measured by a differential low-pressure transducer with a range of \pm 50 Pa.

The pressure probe was located approximately 350-mm below the concrete slab supporting construction.

4.4 Measurement system

The primary measurement system comprised a multiple-channel data logger, scanning at oneminute intervals during the test.

5 Ambient temperature

The temperature of the test area was 24°C at the commencement of the test.

6 Departure from standard

The furnace pressure was below the tolerances of the requirements of AS 1530.4-2014 for a brief period of time as shown in Figure 3. The test laboratory confirms that this departure in furnace pressure would not have significantly affected the results of this test.

7 Termination of test

The test was terminated at 241 minutes by the agreement with the sponsor.

8 Test results

8.1 Critical observations

The following observations were made during the fire-resistance test:

0	
Time	Observation
4 minutes -	Smoke is fluing from the end of the pipe of specimen 2.
5 minutes -	Smoke is fluing from end of the pipes of specimens 3 and 4.
6 minutes -	The level of smoke fluing from the end of the pipe of specimens 2 and 3 has reduced.
7 minutes -	Smoke has begun fluing from the floor waste grate of specimen 1. Cotton pad test was applied above the floor waste grate of specimen $1 - no$ ignition was noted at this time.
8 minutes -	Smoke has ceased fluing from the floor waste grate of specimen 1.
9 minutes -	Smoke has ceased fluing from the pipes of specimens 2 and 3.
12 minutes -	The level of smoke fluing from end of the pipe of specimen 4 has reduced.
14 minutes -	The pipe of specimen 4 has begun to distort
16 minutes -	Light smoke has resumed fluing from the end of the pipes of specimens 2 and 3.
34 minutes -	Light smoke has resumed fluing from the floor waste grate of specimen 1.
45 minutes -	Smoke has ceased fluing from the pipe of specimen 3.
69 minutes -	Smoke has ceased fluing from the pipe of specimens 2 and 4.
83 minutes -	The white-collar casing at the base of specimen 4 has begun to melt, the pipe at the base of the specimen continues to deform.
124 minutes -	The white-collar casing at the base of specimen 4 has continues to melt, the pipe at the base specimen continues to deform.
151 minutes -	Insulation failure of specimen 4 - maximum temperature rise of 180K is exceeded on the slab 25-mm from the collar case at the base (north side).
204 minutes -	The thermocouple (#13) pad at the base of specimen 4 has been covered with molten white plastic from the collar.
230 minutes -	The white-collar casing at the base of specimen 2 has been pushed up above the slab with some sections melted.
235 minutes -	The white-collar casing and black pipe at the base of specimen 4 have melted.
236 minutes -	Intumescent material is visible through the metal grate inside the pipe of the floor waste of specimen 1.
237 minutes -	Insulation failure of specimen 2 - maximum temperature rise of 180K is exceeded on the northern side of the slab, 25-mm from the collar.
242 minutes -	Test terminated.

8.2 Furnace temperature

Figure 1 shows the standard curves of temperature versus time for heating the furnace chamber and the actual curves of average and maximum temperature versus time recorded during the heating period.

8.3 Furnace severity

Figure 2 shows the curve of furnace severity versus time during the heating period.

8.4 Furnace pressure

Figure 3 shows the curve of average pressure versus time inside the furnace chamber recorded during the heating period.

8.5 Specimen temperature

Figure 4 shows the curve of temperature versus time associated with specimen 1. Figure 5 shows the curve of temperature versus time associated with specimen 2. Figure 6 shows the curve of temperature versus time associated with specimen 3. Figure 7 shows the curve of temperature versus time associated with specimen 4.

8.6 Performance

Performance observed in respect of the following AS 1530.4-2014 criteria:

Specimen 1 – A SNAP LP100R-D Low Profile Retrofit fire collar and SNAP H100FWS-RR			
High-Top Floor Waste Shower Cast-in fire collar protecting a nominal 4-inch Fuseal			
polypropylene pipe incorporating a f	loor was	te and a P Trap	
Structural adequacy	-	not applicable	
Integrity	-	no failure at 241 minutes	
Insulation	-	no failure at 241 minutes	

Specimen 2 - A SNAP H100S-RR High-Top Stack cast-in fire collar protecting a nominal
4-inch Fuseal polypropylene stack pipe
Structural adequacynot applicableIntegrity-no failure at 241 minutesInsulation-237 minutes

Specimen 3 - A SNAP H50S-RR High-Top	o Stack cast-in fire colla	ar protecting a nominal
2-inch Fuseal polypropylene stack pipe		
Structural adequacy	-	not applicable
Integrity	-	no failure at 241 minutes
Insulation	-	no failure at 241 minutes

<u>Specimen 4 - A SNAP H150S-RR H</u>	igh-Top Stack	cast-in fire collar protecting a nominal
6-inch Fuseal polypropylene stack	pipe	
Structural adequacy	-	not applicable
Integrity	-	no failure at 241 minutes
Insulation	-	151 minutes

This report details methods of construction, the test conditions and the results obtained when the specific element of construction described herein was tested following the procedure outlined in AS 1530.4. Any significant variation with respect to size, construction details, loads, stresses, edge of end conditions, other than that allowed under the field of direct application in the relevant test method, is not covered by this report.

Because of the nature of fire resistance testing and the consequent difficulty in quantifying the uncertainty of the measurement of fire resistance, it is not possible to provide a stated degree for accuracy of the result.

9 Fire-resistance level (FRL)

For the purpose of building regulations in Australia, the *FRL's of the test specimens were as follows:

Specimen 1	-	-/240/240
Specimen 2	-	-/240/180*
Specimen 3	-	-/240/180*
Specimen 4	-	-/240/120

The fire-resistance level of the specimen is applicable when the system is exposed to fire from the same direction as tested.

* Specimens were tested in a concrete slab with a Fire Resistance Period (FRP) for insulation of 180 minutes in accordance with Table 5.5.1 of AS 3600:2018 - Concrete structures. The maximum FRL of any test specimen cannot exceed the FRL achieved by the concrete slab in which it was installed.

For the purposes of AS 1530.4-2014, the results of these fire tests may be used to directly assess fire hazard, but it should be noted that a single test method will not provide a full assessment of fire hazard under all fire conditions.

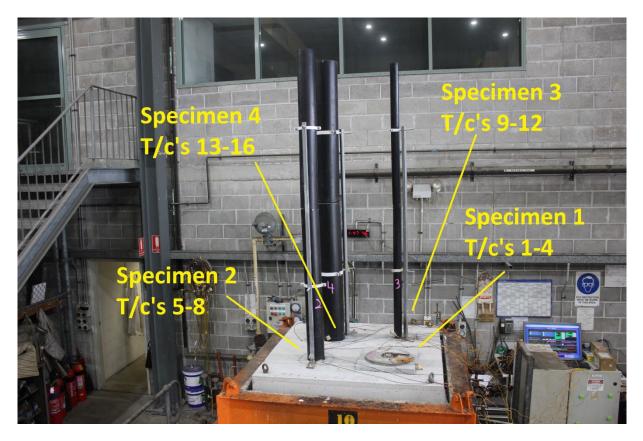
10 Field of direct application of test results

The results of the fire test contained in this test report are directly applicable, without reference to the testing authority, to similar constructions where one or more changes listed in Clause 10.12 of AS 1530.4-2014, have been made provided no individual component is removed or reduced.

11 Tested by

Peter Gordon Testing Officer

Appendices

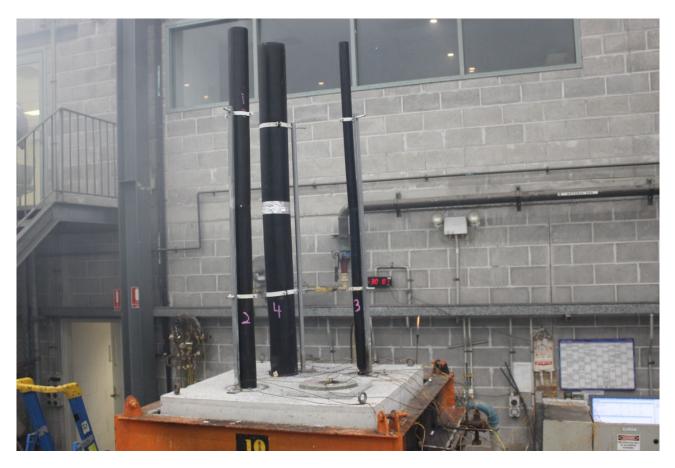

Appendix A – Measurement location

Specimen	T/C Position	T/C designation
Specimen 1 - A SNAP LP100R-D	On the centre of the grate	S1
Low Profile Retrofit fire collar and a SNAP H100FWS-RR cast-	On the screed, 25-mm from the grate (North)	S2
in fire collar protecting a	On the screed, 25-mm from the grate (South)	S3
nominal 4-inch Fuseal PP110 pipe incorporating a floor waste and a P-Trap	On the slab, 25-mm from the screed (North)	S4
Specimen 2 - A SNAP H100S-RR	On the slab, 25-mm from the collar (North)	S5
High-Top cast-in fire collar protecting a nominal 4-inch	On the slab, 25-mm from collar (South)	S6
Fuseal polypropylene stack	On the pipe, 25-mm above the slab (North)	S7
pipe	On the pipe, 25-mm above the slab (South)	S8
Specimen 3 - A SNAP H50S-RR	On the slab, 25-mm from the collar (North)	S9
High-Top cast-in fire collar protecting a nominal 2-inch Fuseal polypropylene stack	On the slab, 25-mm from collar (South)	\$10
	On the pipe, 25-mm above the slab (North)	S11
pipe	On the pipe, 25-mm above the slab (South)	\$12
Specimen 4 - A SNAP H150S-RR	On the slab, 25-mm from the collar (North)	\$13
High-Top cast-in fire collar protecting a nominal 6-inch	On the slab, 25-mm from collar (South)	S14
Fuseal polypropylene stack	On the pipe, 25-mm above the slab (North)	\$15
pipe	On the pipe, 25-mm above the slab (South)	S16
Rover		S17
Ambient		S18

Appendix B – Photographs

PHOTOGRAPH 1 – EXPOSED FACE OF SPECIMENS PRIOR TO TESTING

PHOTOGRAPH 2 – UNEXPOSED FACE OF SPECIMENS PRIOR TO TESTING


PHOTOGRAPH 3 – UNEXPOSED FACE OF SPECIMENS PRIOR TO TESTING

PHOTOGRAPH 4 – SPECIMENS AT 9 MINUTES INTO THE TEST

PHOTOGRAPH 5 – SPECIMEN 4 AT 14 MINUTES INTO THE TEST

PHOTOGRAPH 6 – SPECIMENS AT 30 MINUTES INTO THE TEST

PHOTOGRAPH 7 – SPECIMENS AT 60 MINUTES INTO THE TEST

PHOTOGRAPH 8 – SPECIMEN 4 AT 88 MINUTES INTO THE TEST

PHOTOGRAPH 9 – SPECIMENS AT 90 MINUTES INTO THE TEST

PHOTOGRAPH 10 – SPECIMEN 1 AT 120 MINUTES INTO THE TEST

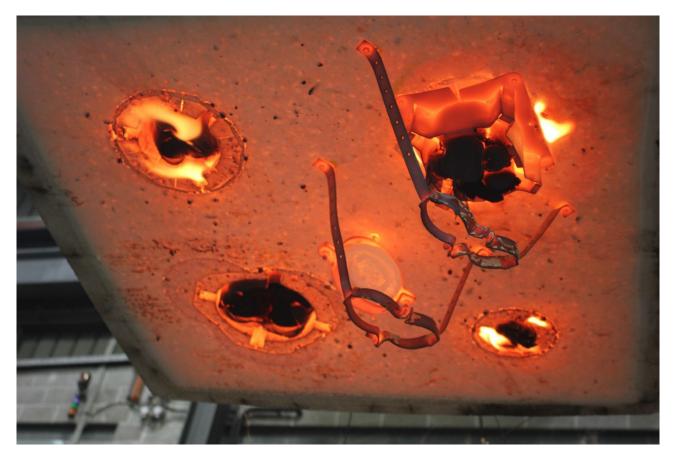
PHOTOGRAPH 11 – SPECIMENS AT 150 MINUTES INTO THE TEST

PHOTOGRAPH 12 – SPECIMENS AT 180 MINUTES INTO THE TEST

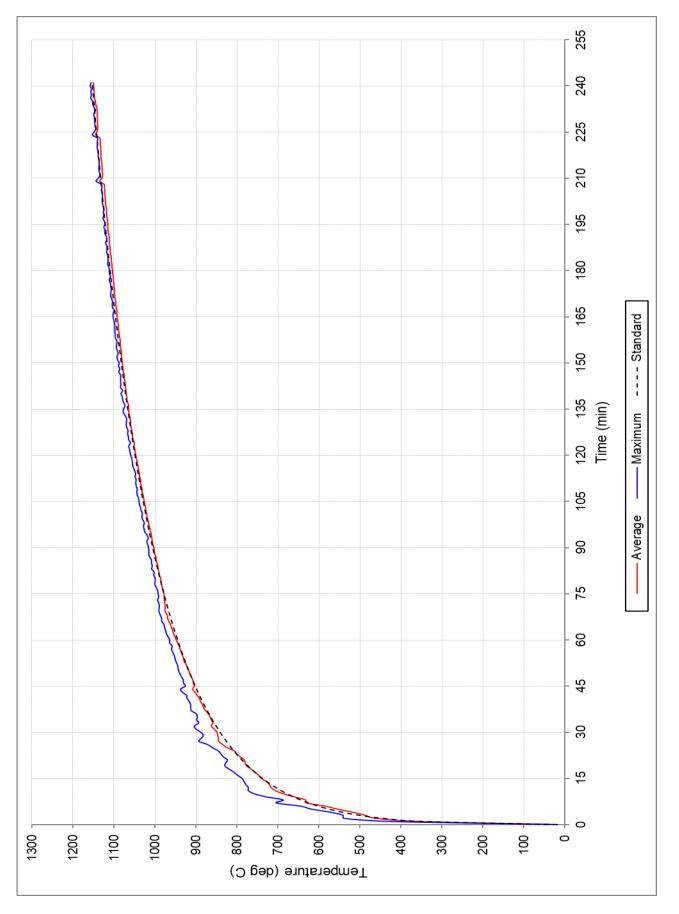
PHOTOGRAPH 13 – THE BASE OF SPECIMEN 2 AT 230 MINUTES INTO THE TEST

PHOTOGRAPH 14 – SPECIMENS AT 240 MINUTES INTO THE TEST.

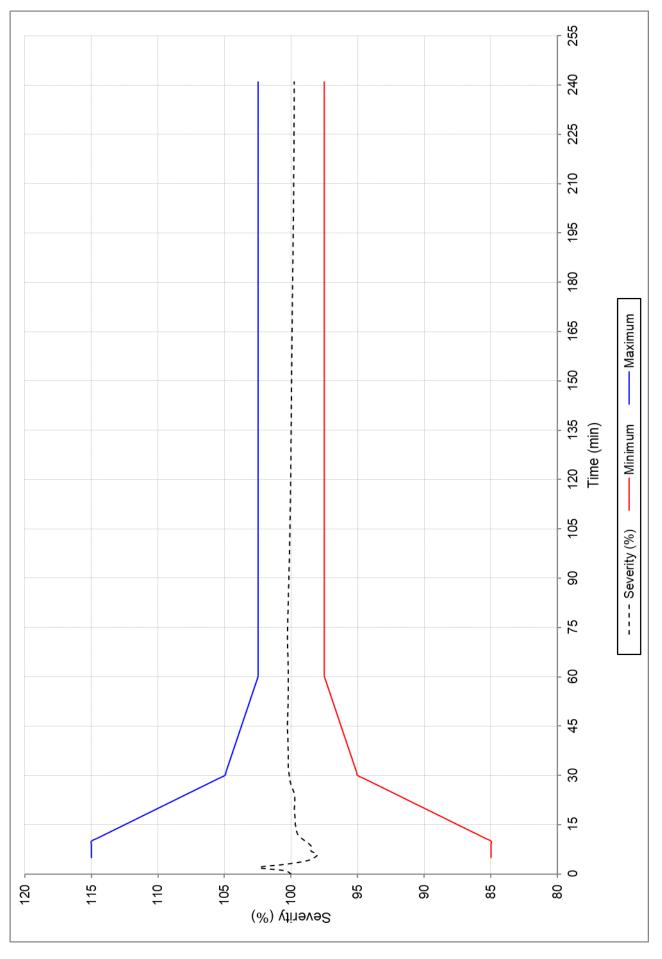
PHOTOGRAPH 15 – SPECIMEN 1 AT 240 MINUTES INTO THE TEST


PHOTOGRAPH 16 – SPECIMEN 2 AT 240 MINUTES INTO THE TEST

PHOTOGRAPH 17 – SPECIMEN 3 AT 240 MINUTES INTO THE TEST



PHOTOGRAPH 18 – SPECIMEN 4 AT 240 MINUTES INTO THE TEST



PHOTOGRAPH 19 – EXPOSED FACE OF SPECIMENS AT THE CONCLUSION OF TESTING

Appendix C – Test Data charts

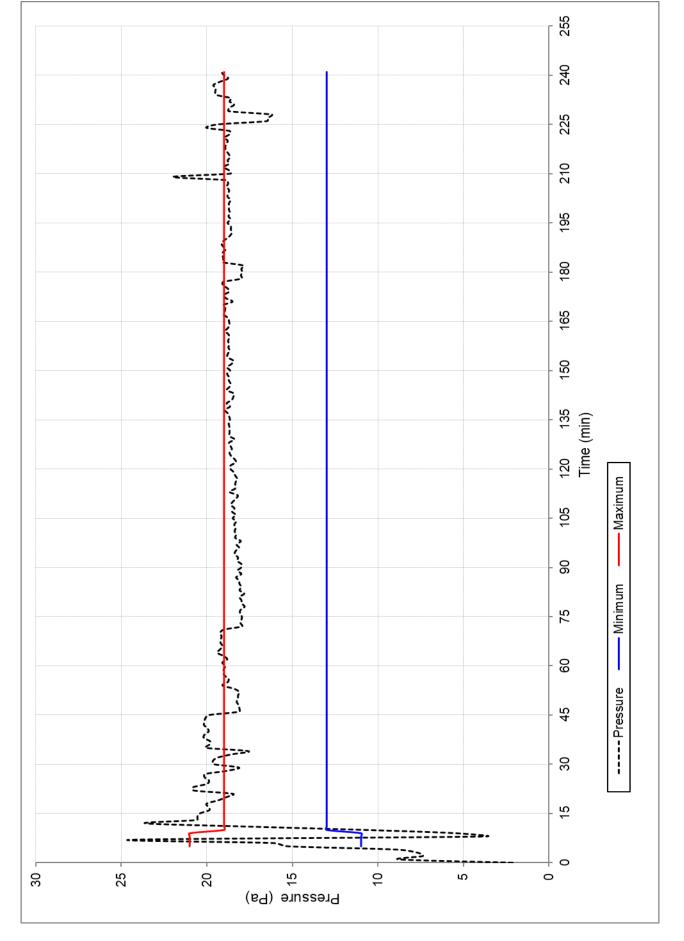
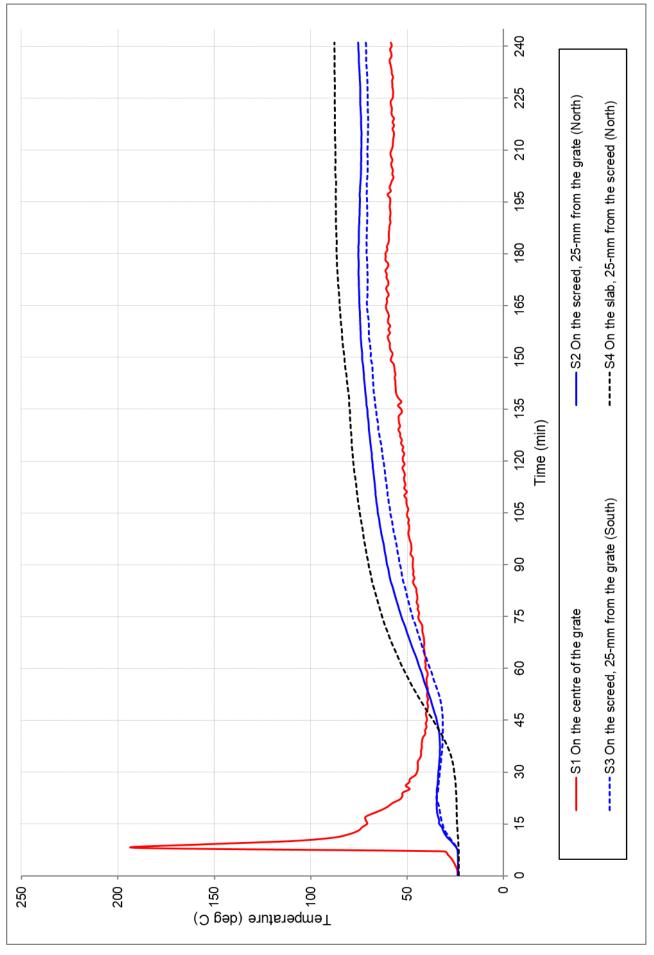
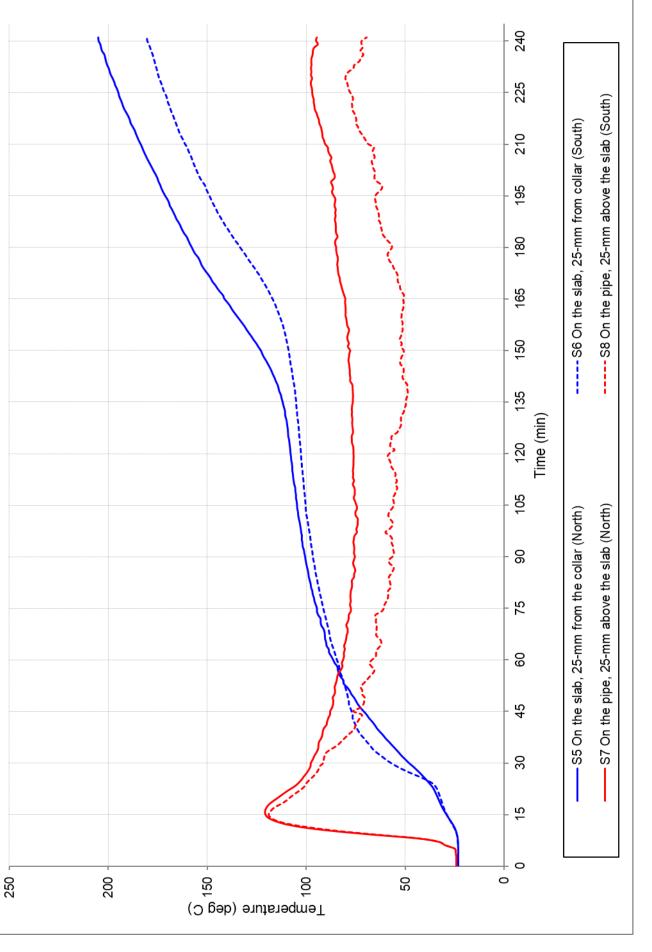
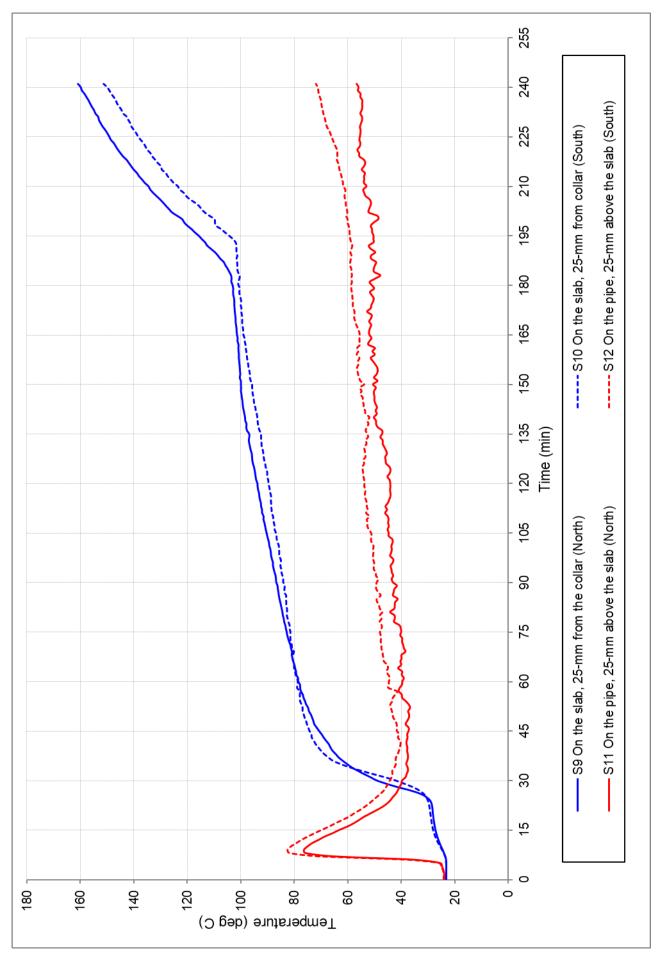
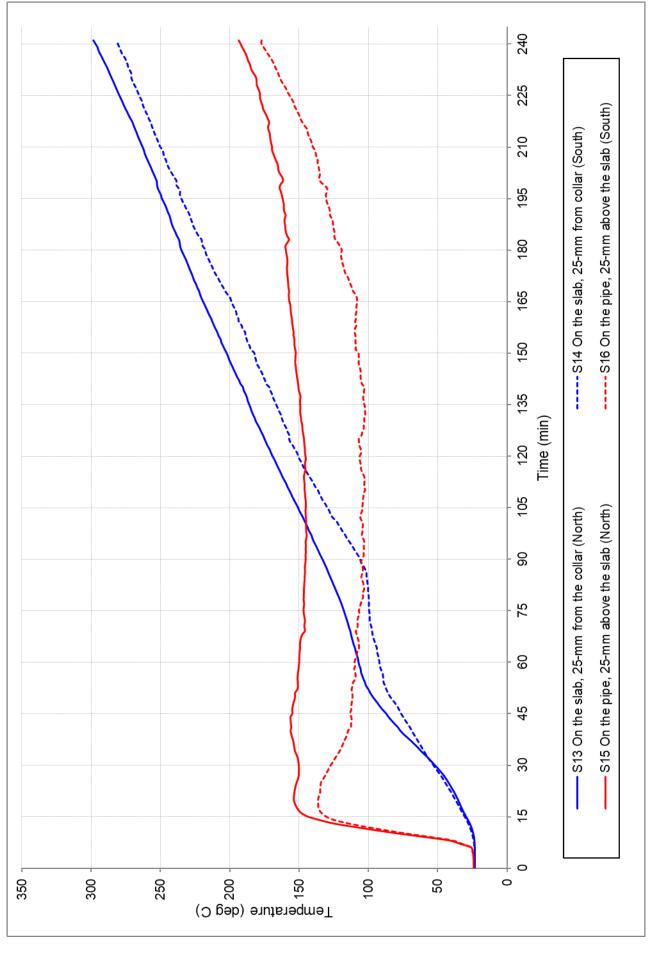
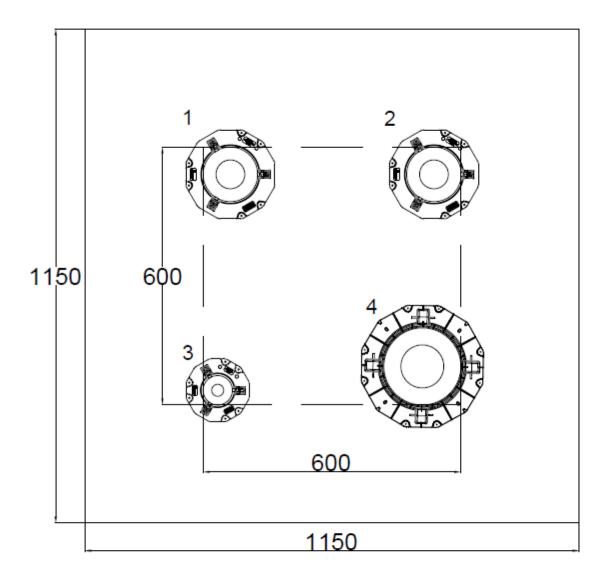
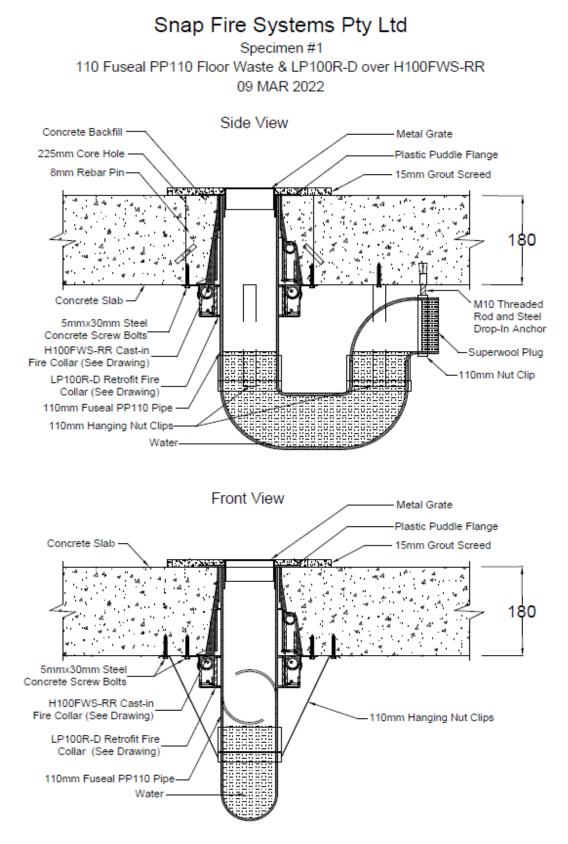




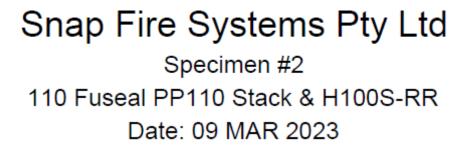
FIGURE 3 – FURNACE PRESSURE

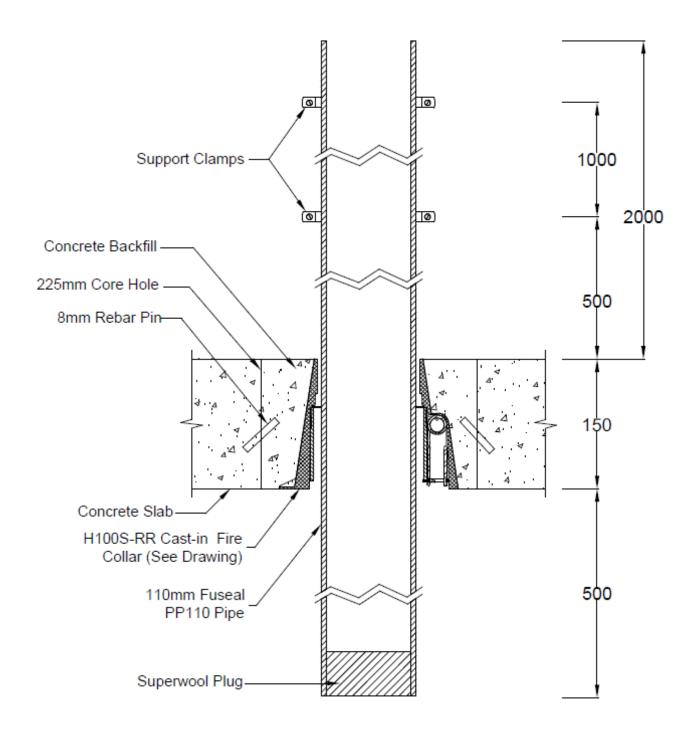




FIGURE 6 – SPECIMEN TEMPERATURE – ASSOCIATED WITH SPECIMEN 3

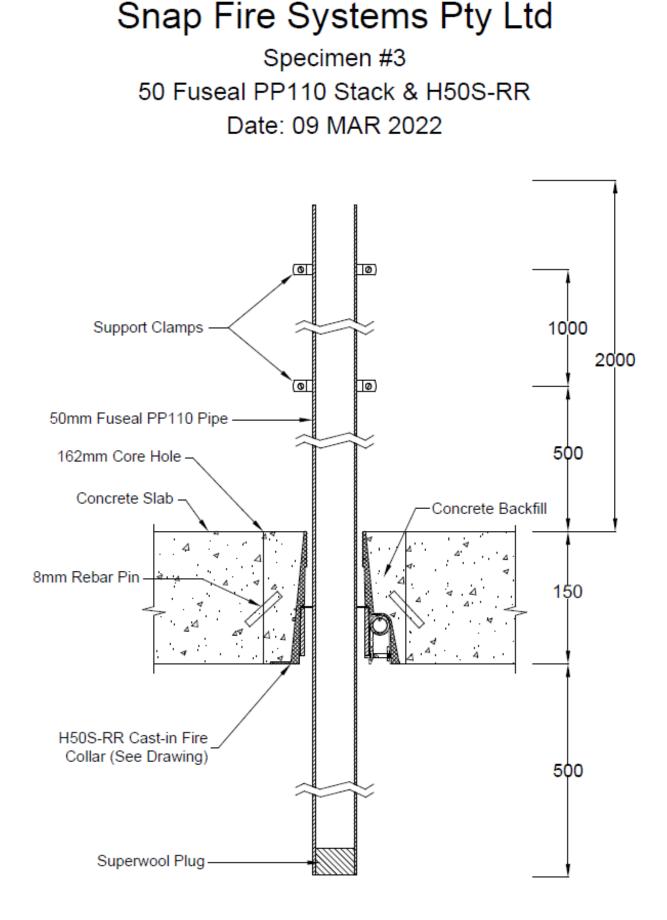

Appendix D – Installation drawings

Snap Fire Systems Pty Ltd Test Slab S-22-D Layout Date: 18 JAN 2022

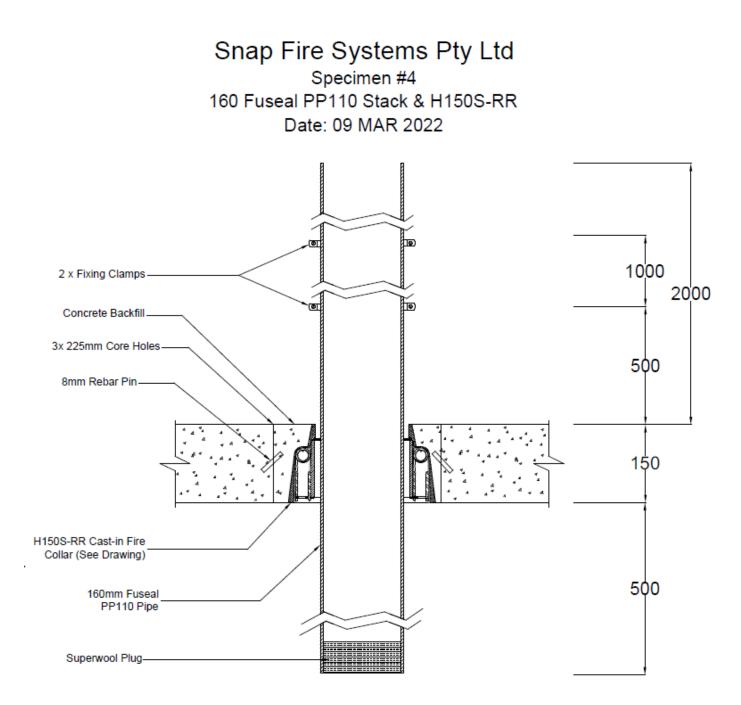


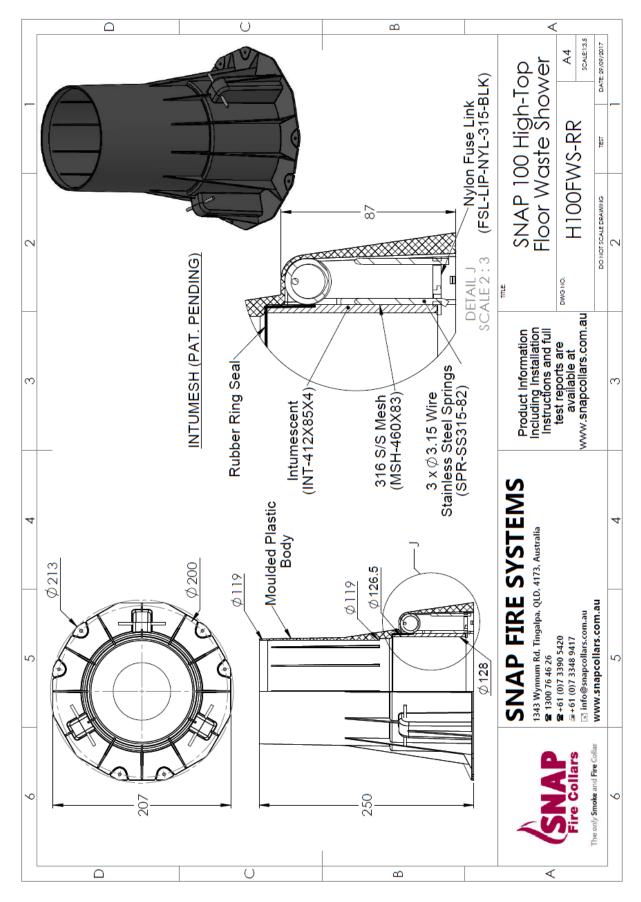

Penetration	Collar Code	Pipe Type	Pipe Diameter
1	H100FWS-RR & LP100R-D	Fuseal	110
2	H100S-RR	Fuseal	110
3	H50S-RR	Fuseal	50
4	H150S-RR	Fuseal	160

DRAWING TITLED "TEST SLAB S-22-D LAYOUT", DATED 18 JANUARY 2022, BY SNAP FIRE SYSTEMS PTY LTD

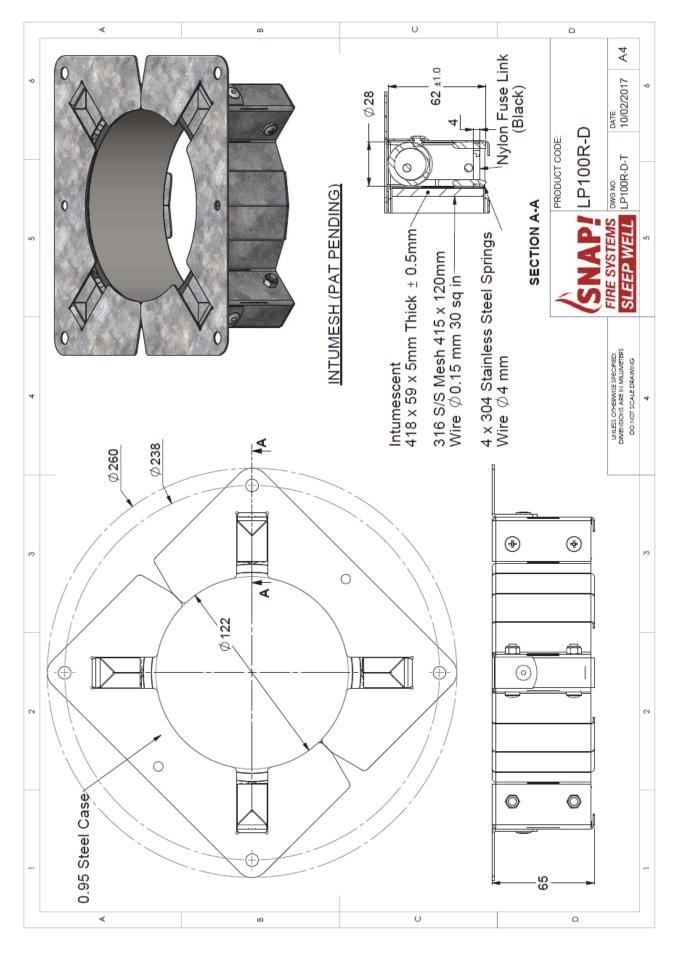


DRAWING TITLED 'SPECIMEN #1 '110 FUSEAL PP110 FLOORWASTE & LP100R-D OVER H100FWS-RR', DATED 24 FEB 2022, BY SNAP FIRE SYSTEMS PTY LTD

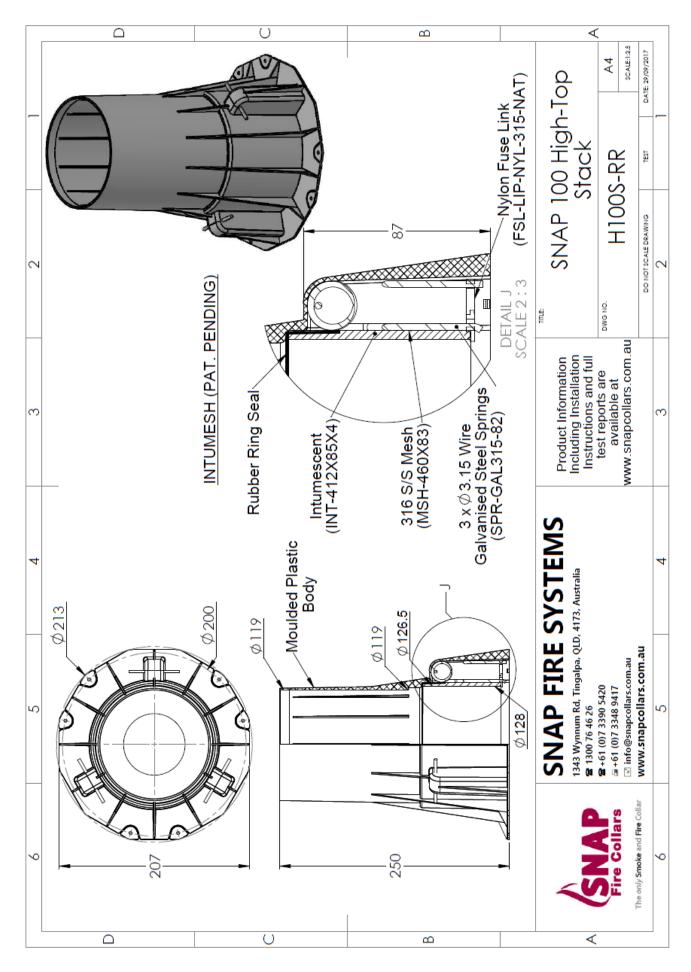



DRAWING TITLED 'SPECIMEN #2, 110 FUSEAL PP110 STACK & H100S-RR', DATED 9 MARCH 2022 BY SNAP FIRE SYSTEMS PTY LTD

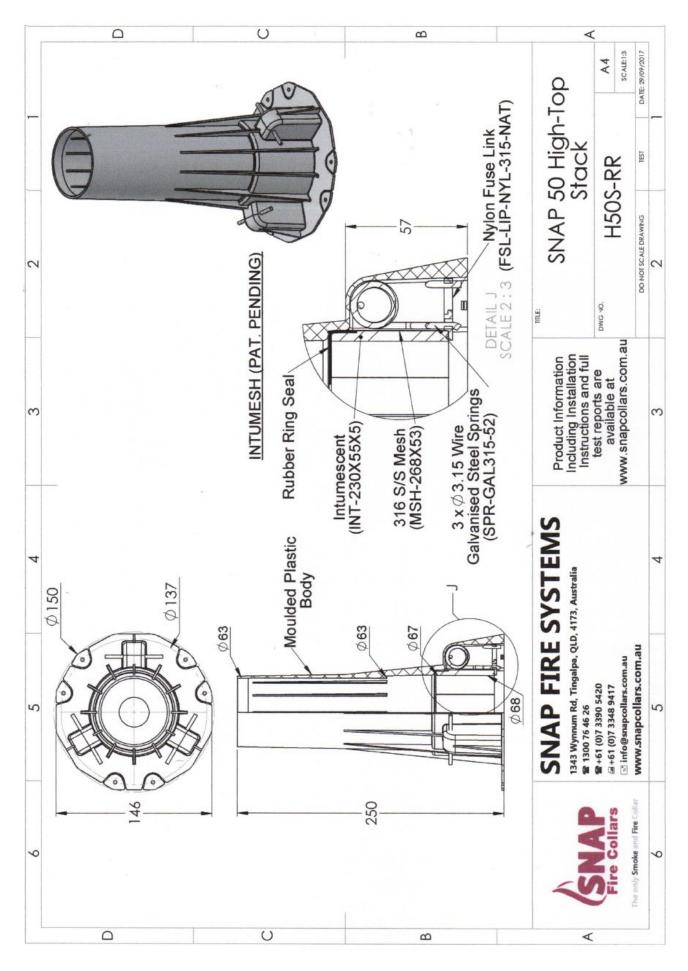
DRAWING TITLED 'SPECIMEN #3 50 FUSEAL PP110 STACK & H50S-RR', DATED 9 MARCH 2022 BY SNAP FIRE SYSTEMS PTY LTD

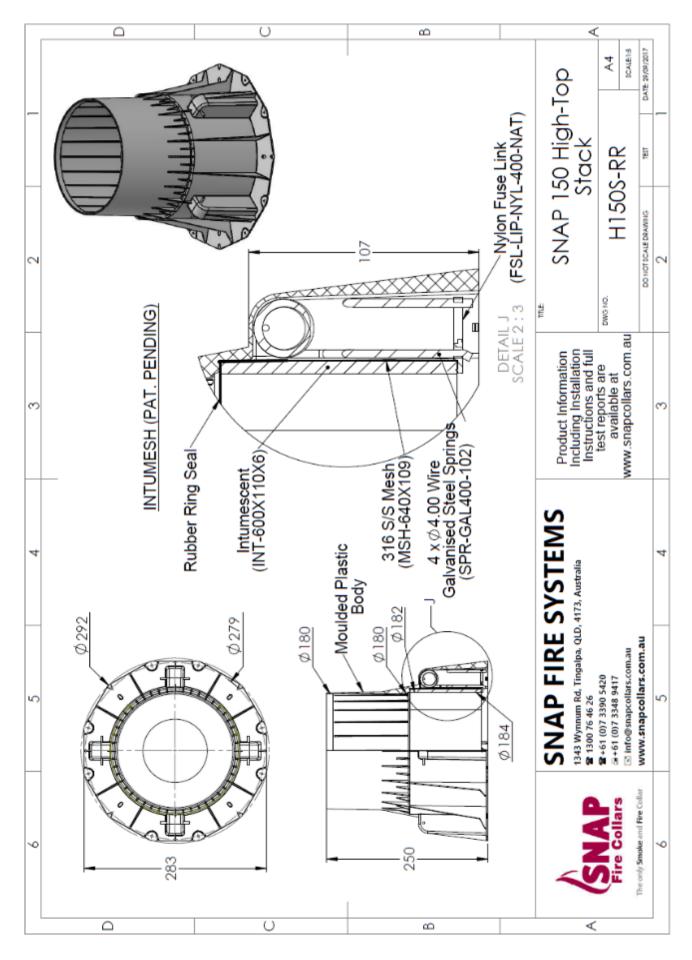


DRAWING TITLED 'SPECIMEN #4 160 FUSEAL PP110 STACK & H150S-RR', DATED 9 MARCH 2022 BY SNAP FIRE SYSTEMS PTY LTD



Appendix E – Specimen Drawings


DRAWING TITLED 'SNAP 100 HIGH-TOP FLOOR WASTE SHOWER' DATED 29 SEPTEMBER 2017, BY SNAP FIRE SYSTEMS PTY LTD.


DRAWING NUMBERED LP100R-D-T, DATED 10 FEBRUARY 2017, BY SNAP FIRE SYSTEMS PTY LTD

DRAWING TITLED "SNAP 100 HIGH-TOP STACK", DATED 29 SEPTEMBER 2017, BY SNAP FIRE SYSTEMS PTY LTD

DRAWING TITLED "SNAP 50 HIGH-TOP STACK", DATED 29 SEPTEMBER 2017, BY SNAP FIRE SYSTEMS PTY LTD

DRAWING TITLED "SNAP 150 HIGH-TOP STACK", DATED 29 SEPTEMBER 2017, BY SNAP FIRE SYSTEMS PTY LTD

Appendix F – Certificate(s) of Test

	STRUCTURE TECHNOLOGIE	S		
ww	vw.csiro.au			
14 Julius A				CSIRO
	le NSW 2113 Australia 90 5444 • ABN 41 687 119 230			
	Ce	ertificate of	Test	
				No. 3681b
Australian Standa	fy that the element of construction ard 1530, Methods for fire tests on buildin Service penetrations and control joints, o	ng materials, components and		
	IG6 Pty Ltd 1343 Wynnum Road Tingalpa QLD			
A full description	of the test specimen and the complete test	st results are detailed in the C	Division's report numbered FS	SP 2274 Revision B.
Product Name:	SNAP LP100R-D Low Profile Retrofit fir nominal 4-inch Fuseal polypropylene pi		e 가슴 가슴 물 수 있는 것을 알고 해서 것이 없을 것 같은 것을 것 같이 가지 않았어요?	hower Cast-in fire collar protecting
Description:	The specimen comprised an 1150-mm polypropylene pipes protected with SN, as Specimen 1, 2, 3 and 4. Specimen 1 installation of Specimen 1 was reinfo insulation of 240 minutes in accordance Waste Shower Cast-in fire collar compr The 250-mm high collar casing incorpor closing mechanism comprised three er grade stainless steel wire with a diame SNAP H100FWS-RR High-Top Floor Was 180-mm high finishing flush with unexp 0.95-mm steel casing with a 122 mm i mechanism which comprised a 5-mm circumference of collar casing. Closing 1 a 415-mm long x 120-mm wide mesh H100FWS-RR cast-in collar on exposed screw bolts. Penetrating service compri PP110 polypropylene pipe had a 114.3 fire collars. The top of the propylene [flange. A 15-mm thick grout screed was slab a Fuseal P-Trap was coupled bel (Superwool) plug. P-Trap was coupled bel sond from the end of P-Trap, with a provided technical brochure 'Fuseal Co Layout', dated 18 January 2022, drawin 2022, drawing titled 'SNAP 100 High-Tc 2017 as a complete description of the sp	AP retrofit and cast-in fire coll 1 is the subject of this Certifi riced with a single layer of sis e with table 5.5.1 of AS 3600:: rised a 1.6-mm thick polyprop rated a layer of 412-mm x 85-1 qually spaced steel springs h tetr of 3.15-mm, with the spr ste Shower collar was cast into posed face of the concrete sla inner dia. and a 260-mm dia. n thick x 59-mm wide x 4: mechanism comprised four 4- with a wire dia. of 0.15 mm d face of concrete slab and fi ised a pipe with a floor waste -mm outside dia. pipe with a pipe incorporated a floor waste is al on top of concrete slab o to the SNAP LP100R-D fire ed from centre coupling using a rustive Waste Piping Systems my Specimen #1 110 Fuseal P op Floor Waste Shower', dated specimen and should be read i	lars. For the purpose of the t icate. The 180-mm thick sec- steel reinforcement providin 2018 - Concrete structures. T ylene casing with a 119-mm mm x 4-mm thick Intumescee eld with nylon fuse links. TI ings acting against a layer o o a 180-mm thick concrete sla bb. The SNAP LP100R-D lore of base flange. The 65-mm hig Ba-mm long Intumesh intu- mm dia. 304 stainless steel s . The SNAP LP100R-D fire of ixed in place through the fo system incorporating a P-Tr wall thickness of 6.7 mm an ste comprising a chrome pl and finished flush with the fl collar. The end of the P-Ti g double hanging side nut of rod fixed May 2012t So Georg f / 1110 Floor Waste & LP100R d 29 September 2017, and di	est, the penetrations were referencer tion of the concrete slab used in th g a Fire Resistance Period (FRP) fo he SNAP H100FWS-RR High-Top Floo inner dia. and a 213-mm base flange tt material and a rubber ring seal. Th he springs were fabricated using 30- f 316 grade stainless steel mesh. Th hab with the collar's casing cut down to Profile Retrofit fire collar comprised a h collar casing incorporated a closing mescent wrap lined within interna springs with black nylon fuse links and allar was centrally located over SNAI ur mounting brackets using correct ap. Penetrating George Fischer Fusea d was fitted through a sleave on bot tated brass grate and a plastic puddlk loor grate. On the exposed side of the rap was closed with a ceramic fibm- ips fixed to slab with concrete screw h a steel drop-in anchor. The Sponso Fischer LLC, drawing 'Test Slab S-22-D- D over H100FWS-RR', dated 9 Marcl rawing LP100R-D-T dated 10 Februar
	Structural Adequacy	34	not app	
	Integrity Insulation	20	no failure at 241 m no failure at 241 m	
and therefore for	the purpose of Building Regulations in Au	ustralia, achieved a fire-resista		
The fire-resistance exceed the FRL a directly assess fir	e level is applicable when the system is ex- chieved by the concrete slab in which it w re hazard, but it should be noted that a si ided for general information only and doe	xposed to fire from the same was installed. For the purpose ingle test method will not pro	direction as tested. The max as of AS 1530.4:2014 the res ovide a full assessment of fire	ults of these fire tests may be used t e hazard under all fire conditions. Thi
Testing Officer:	Peter Gordon		Date of Test:	21 March 2022
issued on the 20 ^t	^h day of December 2023 without alteration	ns or additions.		
Clock	r Manager, Fire Testing and Assessments			
Сфек	,			
Сфек		#0	0.000 @"	
Сфек	Copying or altera	"Copyright CSII ation of this report without wr		RO is forbidden

COPY OF CERTIFICATE OF TEST - NO. 3681B

INFRASTRUCTURE TECHNOLOGIES www.csiro.au

14 Julius Avenue, North Ryde NSW 2113 Australia T (02) 9490 5444 • ABN 41 687 119 230

Certificate of Test

No. 3682a

SIR

This is to certify that the element of construction described below was tested by CSIRO Infrastructure Technologies in accordance with Australian Standard 1530, Methods for fire tests on building materials, components and structures, Part 4 Fire-resistance tests of elements of construction, 2014. Section 10: Service penetrations and control joints, on behalf of:

> IG6 Ptv Itd 1343 Wynnum Road Tingalpa QLD

A full description of the test specimen and the complete test results are detailed in the Division's report numbered FSP 2274.

SNAP H100S-RR High-Top Stack cast-in fire collar protecting a nominal 4-inch Fuseal polypropylene stack pipe (Specimen 2) Product Name:

Description:

The specimen comprised an 1150-mm x 1150-mm x 150mm/180-mm concrete slab which was penetrated by a total of four (4) polypropylene pipes protected with SNAP retrofit and cast-in fire collars. For the purpose of the test, the penetrations were referenced as Specimen 1, 2, 3 and 4. Specimen 2 is the subject of this Certificate. The 150-mm thick section of the concrete slab used in the installation of Specimens 2, 3 and 4 was reinforced with a single layer of steel reinforcement providing a Fire Resistance Period (FRP) for insulation of 180 minutes in accordance with table 5.5.1 of AS 3600:2018 - Concrete structures. The SNAP H100-S-RR High-Top Stack cast-in fire collar comprised a 1.6-mm thick polypropylene casing with a 119-mm inner diameter and a 213-mm diameter base flange. The 250-mm high collar casing incorporated a 412-mm x 85-mm x 4-mm thick Intumesh intumescent material and a rubber ring seal. The closing mechanism comprised three equally spaced 3.15-mm diameter galvanised steel springs bound with nylon fuse links acting against a 460-mm x 83-mm 316 stainless steel mesh. The SNAP H100S-RR High-Top Stack fire collar was cast into a 150-mm thick concrete slab with the collar's casing cut down to 150mm high finishing flush with the unexposed face of the concrete slab. The penetrating service comprised a George Fischer Fuseal PP110 polypropylene pipe with a 114.3-mm outside diameter pipe and a wall thickness of 6.7-mm fitted through the collars sleeve. The pipe projected vertically 2000-mm above the unexposed face of the concrete slab and 500 mm below into the furnace chamber. The pipe was supported at nominally 500-mm and 1500-mm from the unexposed face of the slab, left open at the unexposed end and capped with a ceramic fibre (Superwool) plug on the exposed end. On the unexposed face the annular gap between the pipe and the collars sleeve was left unprotected. The Sponsor provided technical brochure 'Fuseal Corrosive Waste Piping Systems' dated May 2012 by Georg Fischer LLC, drawing titled 'Test Slab S-22-D' Layout', dated 18 January 2022, drawing titled 'Specimen #2, 110 Fuseal PP110 Stack & H100S-RR', dated 9 March 2022 and drawing numbered SNAP 100 High-Top Stack", dated 29 September 2017 as a complete description of the specimen and should be read in conjunction with this Certificate.

Performance observed in respect of the following AS 1530.4-2014 criteria

Structural Adequacy	-	not applicable
Integrity		no failure at 241 minutes
Insulation		237 minutes

and therefore for the purpose of Building Regulations in Australia, achieved a fire-resistance level (FRL) of -/240/180.

The fire-resistance level is applicable when the system is exposed to fire from the same direction as tested. The maximum FRL of any test specimen cannot exceed the FRL achieved by the concrete slab in which it was installed. For the purposes of AS 1530.4-2014 the results of these fire tests may be used to directly assess fire hazard, but it should be noted that a single test method will not provide a full assessment of fire hazard under all fire conditions. This certificate is provided for general information only and does not comply with regulatory requirements for evidence of compliance.

Testing Officer:

Date of Test: 21 March 2022

Peter Gordon Issued on the 20th day of December 2023 without alterations or additions.

· COJUK

Chris Wojcik | for Manager, Fire Testing and Assessments

"Copyright CSIRO 2022 @" Copying or alteration of this report without written authorisation from CSIRO is forbidden

This document is issued in accordance with NATA's accreditation requirements. Accreditation No. 165 - Corporate Site No. 3625 Accredited for compliance with ISO/IEC 17025 - Testing

COPY OF CERTIFICATE OF TEST - NO. 3682A

INFRASTRUCTURE TECHNOLOGIES www.csiro.au

14 Julius Avenue, North Ryde NSW 2113 Australia T (02) 9490 5444 • ABN 41 687 119 230

Certificate of Test

No. 3683a

SIR

This is to certify that the element of construction described below was tested by CSIRO Infrastructure Technologies in accordance with Australian Standard 1530, Methods for fire tests on building materials, components and structures, Part 4 Fire-resistance tests of elements of construction, 2014. Section 10: Service penetrations and control joints, on behalf of:

> IG6 Ptv Itd 1343 Wynnum Road Tingalpa QLD

A full description of the test specimen and the complete test results are detailed in the Division's report numbered FSP 2274.

SNAP H50S-RR High-Top Stack cast-in fire collar protecting a nominal 2-inch Fuseal polypropylene stack pipe (Specimen 3) Product Name:

Description:

The specimen comprised an 1150-mm x 1150-mm x 150mm/180-mm concrete slab which was penetrated by a total of four (4) polypropylene pipes protected with SNAP retrofit and cast-in fire collars. For the purpose of the test, the penetrations were referenced as Specimen 1, 2, 3 and 4. Specimen 3 is the subject of this Certificate. The 150-mm thick section of the concrete slab used in the installation of Specimens 2, 3 and 4 was reinforced with a single layer of steel reinforcement providing a Fire Resistance Period (FRP) for insulation of 180 minutes in accordance with table 5.5.1 of AS 3600:2018 - Concrete structures. The SNAP H50S-RR High-Top Stack cast-in fire collar comprised a 1.6-mm thick polypropylene casing with a 63 mm inner diameter and a 150-mm diameter base flange. The 250 mm high collar casing incorporated a 230-mm x 55-mm x 5-mm thick Intumesh intumescent material and a rubber ring seal. The closing mechanism comprised three galvanised steel springs bound with nylon fuse links and a 268-mm x 53-mm 316 stainless steel. The SNAP H50S-RR High-Top Stack fire collar was cast into a 150mm thick concrete slab with the collar casing cut down to 150-mm high finishing flush with the unexposed face of the concrete slab. The penetrating service comprised a George Fischer Fuseal PP110 polypropylene pipe with a 61.2 mm outside diameter pipe and a wall thickness of 4.5-mm fitted through the collars sleeve. The pipe projected vertically 2000-mm above the unexposed face of the concrete slab and 500 mm below into the furnace chamber. The pipe was supported at nominally 500mm and 1500-mm from the unexposed face of the slab, left open at the unexposed end and capped with a ceramic fibre (Superwool) plug on the exposed end. On the unexposed face the annular gap between the pipe and the collars sleeve was left unprotected. The Sponsor provided technical brochure 'Fuseal Corrosive Waste Piping Systems' dated May 2012 by Georg Fischer LLC, drawing titled 'Test Slab S-22-D' Layout', dated 18 January 2022, drawing titled 'Specimen #3, 50 Fuseal PP110 Stack & H50S-RR', dated 9 March 2022 and drawing numbered SNAP 50 High-Top Stack', dated 29 September 2017 as a complete description of the specimen and should be read in conjunction with this Certificate.

Performance observed in respect of the following AS 1530.4:2014 criteria

Structural Adequacy		not applicable
Integrity		no failure at 241 minutes
Insulation	-	no failure at 241 minutes

and therefore for the purpose of Building Regulations in Australia, achieved a fire-resistance level (FRL) of -/240/180.

The fire-resistance level is applicable when the system is exposed to fire from the same direction as tested. The maximum FRL of any test specimen cannot exceed the FRL achieved by the concrete slab in which it was installed. For the purposes of AS 1530.4:2014 the results of these fire tests may be used to directly assess fire hazard, but it should be noted that a single test method will not provide a full assessment of fire hazard under all fire conditions. This certificate is provided for general information only and does not comply with regulatory requirements for evidence of compliance.

Testing Officer:

Peter Gordon

21 March 2022 Date of Test:

Issued on the 20th day of December 2023 without alterations or additions.

Chris Wojcik | for Manager, Fire Testing and Assessments

"Copyright CSIRO 2022 @" Copying or alteration of this report without written authorisation from CSIRO is forbidden

This document is issued in accordance with NATA's accreditation requirements. Accreditation No. 165 - Corporate Site No. 3625 Accredited for compliance with ISO/IEC 17025 - Testing

COPY OF CERTIFICATE OF TEST - NO. 3683A

INFRASTRUCTURE TECHNOLOGIES www.csiro.au

14 Julius Avenue, North Ryde NSW 2113 Australia T (02) 9490 5444 • ABN 41 687 119 230

Certificate of Test

No. 3684a

SIR

This is to certify that the element of construction described below was tested by CSIRO Infrastructure Technologies in accordance with Australian Standard 1530, Methods for fire tests on building materials, components and structures, Part 4 Fire-resistance tests of elements of construction, 2014. Section 10: Service penetrations and control joints, on behalf of:

> IG6 Ptv Itd 1343 Wynnum Road Tingalpa QLD

A full description of the test specimen and the complete test results are detailed in the Division's report numbered FSP 2274.

Product Name: Description:

The specimen comprised an 1150-mm x 1150-mm x 150mm/180-mm concrete slab which was penetrated by a total of four (4) polypropylene pipes protected with SNAP retrofit and cast-in fire collars. For the purpose of the test, the penetrations were referenced as Specimen 1, 2, 3 and 4. Specimen 4 is the subject of this Certificate. The 150-mm thick section of the concrete slab used in the installation of Specimens 2, 3 and 4 was reinforced with a single layer of steel reinforcement providing a Fire Resistance Period (FRP) for insulation of 180 minutes in accordance with table 5.5.1 of AS 3600:2018 - Concrete structures. The SNAP H150S-RR High Top Stack fire collar comprised a white 2-mm thick polypropylene casing with a 180 mm inner diameter sleeve and a 292-mm diameter base flange. The 250-mm high collar casing incorporated a 600-mm wide x 110-mm wide x 6mm thick intumescent material and a rubber ring seal. The closing mechanism comprised four x 4-mm diameter galvanised steel springs, four nylon fuse links and a 640 mm x 109-mm 316 stainless steel mesh. The H150S-RR collar was cast into a 150mm thick concrete slab with the collar casing cut down to 150-mm high finishing flush with the unexposed face of the concrete slab. The penetrating service comprised a George Fischer Fuseal PP110 polypropylene pipe with a 168.2 mm outside diameter pipe and a wall thickness of 7.58-mm fitted through the collars sleeve. The pipe projected vertically 2000-mm above the unexposed face of the concrete slab and 500 mm below into the furnace chamber. The pipe was supported at nominally 500mm and 1500-mm from the unexposed face of the slab, left open at the unexposed end and capped with a ceramic fibre (Superwool) plug on the exposed end. On the unexposed face the annular gap between the pipe and the collars sleeve was left unprotected. The Sponsor provided technical brochure 'Fuseal Corrosive Waste Piping Systems' dated May 2012 by Georg Fischer LLC, drawing titled 'Test Slab S-22-D' Layout', dated 18 January 2022, drawing titled 'Specimen #4, 160 Fuseal PP110 Stack & H150S-RR', dated 9 March 2022 and drawing numbered SNAP 150 High-Top Stack', dated 29 September 2017 as a complete description of the specimen and should be read in conjunction with this Certificate.

SNAP H150S-RR High-Top Stack cast-in fire collar protecting a nominal 6-inch Fuseal polypropylene stack pipe (Specimen 4)

Performance observed in respect of the following AS 1530.4-2014 criteria

Structural Adequacy	5	not applicable
Integrity	-	no failure at 241 minutes
Insulation	-	151 minutes

and therefore for the purpose of Building Regulations in Australia, achieved a fire-resistance level (FRL) of -/240/120.

The fire-resistance level is applicable when the system is exposed to fire from the same direction as tested. The maximum FRL of any test specimen cannot exceed the FRL achieved by the concrete slab in which it was installed. For the purposes of AS 1530.4-2014 the results of these fire tests may be used to directly assess fire hazard, but it should be noted that a single test method will not provide a full assessment of fire hazard under all fire conditions. This certificate is provided for general information only and does not comply with regulatory requirements for evidence of compliance.

Testing Officer:

Date of Test: 21 March 2022

Peter Gordon Issued on the 20th day of December 2023 without alterations or additions.

(pop)K

Chris Wojcik | for Manager, Fire Testing and Assessments

"Copyright CSIRO 2023 @" Copying or alteration of this report without written authorisation from CSIRO is forbidden

This document is issued in accordance with NATA's accreditation requirements. Accreditation No. 165 - Corporate Site No. 3625 Accredited for compliance with ISO/IEC 17025 - Testing

COPY OF CERTIFICATE OF TEST - NO. 3684A

References

The following informative documents are referred to in this Report:

AS 1530.4:2014	Methods for fire tests on building materials, components and structures Part 4: Fire-resistance tests for elements of building construction.
AS 4072.1-2005	Components for the protection of openings in fire-resistant separating elements. Part 1: Service penetrations and control joints.
AS 3600-2018	Concrete structures.

*** end of report ***

CONTACT US

t 1300 363 400 +61 3 9545 2176 e enquiries@csiro.au w www.csiro.au

YOUR CSIRO

Australia is founding its future on science and innovation. Its national science agency, CSIRO, is a powerhouse of ideas, technologies and skills for building prosperity, growth, health and sustainability. It serves governments, industries, business and communities across the nation.

FOR FURTHER INFORMATION

Infrastructure Technologies

Brett Roddy Group Leader, Fire Testing and Assessments t +61 2 94905449 e brett.roddy@csiro.au w www.csiro.au/en/Do-business/Services/Materialsinfrastructure/Fire-safety